Trigonometric Functions Formula Sheet

Quick reference for standard trigonometric functions and formula

Basic Trigonometric Functions


\( \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} \)


\( \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} \)


\( \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} \)


\( \csc \theta = \frac{1}{\sin \theta} \)


\( \sec \theta = \frac{1}{\cos \theta} \)


\( \cot \theta = \frac{1}{\tan \theta} \)


Pythagorean Identities


\( \sin^2 \theta + \cos^2 \theta = 1 \)


\( 1 + \tan^2 \theta = \sec^2 \theta \)


\( 1 + \cot^2 \theta = \csc^2 \theta \)


Sum and Difference Formulas


\( \sin(A \pm B) = \sin A \cos B \pm \cos A \sin B \)


\( \cos(A \pm B) = \cos A \cos B \mp \sin A \sin B \)


\( \tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \)


Double-Angle & Half-Angle Formulas


\( \sin(2\theta) = 2 \sin \theta \cos \theta \)


\( \cos(2\theta) = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta \)


\( \tan(2\theta) = \frac{2\tan \theta}{1 - \tan^2 \theta} \)


\( \sin^2(\frac{\theta}{2}) = \frac{1 - \cos \theta}{2} \)


\( \cos^2(\frac{\theta}{2}) = \frac{1 + \cos \theta}{2} \)


\( \tan^2(\frac{\theta}{2}) = \frac{1 - \cos \theta}{1 + \cos \theta} \)


Product-to-Sum & Sum-to-Product Formulas


\( \sin A \sin B = \frac{1}{2}[\cos(A - B) - \cos(A + B)] \)


\( \cos A \cos B = \frac{1}{2}[\cos(A - B) + \cos(A + B)] \)


\( \sin A \cos B = \frac{1}{2}[\sin(A + B) + \sin(A - B)] \)


\( \cos A \sin B = \frac{1}{2}[\sin(A + B) - \sin(A - B)] \)

Common Sine, Cosine, and Tangent Values

Degree (°) Radian (rad) \( \sin \theta \) \( \cos \theta \) \( \tan \theta \)
\( 0 \)\( 0 \)\( 1 \)\( 0 \)
30°\( \frac{\pi}{6} \)\( \frac{1}{2} \)\( \frac{\sqrt{3}}{2} \)\( \frac{1}{\sqrt{3}} \)
45°\( \frac{\pi}{4} \)\( \frac{\sqrt{2}}{2} \)\( \frac{\sqrt{2}}{2} \)\( 1 \)
60°\( \frac{\pi}{3} \)\( \frac{\sqrt{3}}{2} \)\( \frac{1}{2} \)\( \sqrt{3} \)
90°\( \frac{\pi}{2} \)\( 1 \)\( 0 \)
120°\( \frac{2\pi}{3} \)\( \frac{\sqrt{3}}{2} \)\( -\frac{1}{2} \)\( -\sqrt{3} \)
135°\( \frac{3\pi}{4} \)\( \frac{\sqrt{2}}{2} \)\( -\frac{\sqrt{2}}{2} \)\( -1 \)
150°\( \frac{5\pi}{6} \)\( \frac{1}{2} \)\( -\frac{\sqrt{3}}{2} \)\( -\frac{1}{\sqrt{3}} \)
180°\( \pi \)\( 0 \)\( -1 \)\( 0 \)

About the Trigonometric Functions Formula Sheet

This page provides a comprehensive reference for trigonometric functions and identities, including sine, cosine, tangent, cosecant, secant, and cotangent. It covers essential formulas such as Pythagorean identities, sum and difference formulas, double-angle and half-angle formulas, and product-to-sum conversions.

The formula sheet is an essential resource for students, educators, engineers, and scientists working with mathematics, physics, or engineering problems. It provides a quick reference to compute trigonometric values, solve equations, analyze waveforms, and perform geometric calculations efficiently.


Key Benefits and Applications


This Trigonometric Functions Formula Sheet is designed to save time and reduce errors for anyone who needs reliable, high-quality trigonometric references for mathematics, engineering, physics, and technical problem-solving.